极限强度

更新时间:2022-11-30 17:55

极限强度,是指物体在外力作用下发生破坏时出现的最大应力,也可称为破坏强度或破坏应力。

简介

极限强度,一般用“标称应力”来表示。根据应力种类的不同,可分为拉伸强度(σt)、压缩强度(σc)、剪切强度(σs)等。体育锻炼方面极限强度是指持续最大速度或最大力量(肌肉快速紧张地工作)做10~30秒的练习,心率在190次/分以上。

其它

破损船体极限强度非线性有限元分析

基于通用有限元系统,结合船体破损机理和初始缺陷处理方法,建立船体极限强度非线性有限元分析的完整框架。利用对水面舰船和双壳油船极限强度模型试验的比较验证,合理解决非线性有限元分析的关键技术,并对完整和破损船体极限强度进行非线性有限元法分析。然后,在模型试验和非线性有限元分析的基础上提出面向设计的适合破损船体和双向弯曲状态的船体极限强度分析的改进解析方法。

完整和破损船体极限强度非线性有限元分析

以带上层建筑的某A船极限强度设计为例,基于建立的船体极限强度非线性有限元分析的完整框架,对A船中拱极限强度进行分析。利用纵向和横向对称条件,选取船舯1/4舱段为分析对象,附加适当长度的加载段,在加载段施加线性分布载荷,选取合理的边界条件。此时上层建筑大部分已屈服,底部发生屈曲,而中和轴附近保持弹性状态,弹性区域偏向受压底部。A船中拱弯矩与纵向位移关系还给出了理想结构单元法和解析方法的计算结果,三种方法的计算结果相当吻合。

舰船在战争环境中面临着来自空中、水面和水下的各种常规武器 (如反舰导弹、激光炸弹、鱼雷和水雷等) 的攻击,爆炸破损在舰船船体横剖面上的位置是全方位的。基于建立的船体极限强度非线性有限元分析的完整框架,模拟某B船上舷侧爆炸破损典型工况,利用纵向对称条件,选取船舯1/2舱段为分析对象,附加适当长度的加载段,在加载段施加线性分布载荷,选取合理的边界条件。由于剩余有效剖面的非对称性,剖面极限中和轴不再与基线平行,极限中和轴相对于弹性中和轴发生平移和转动;受拉边缘屈服,受压边缘屈曲,而极限中和轴附近保持弹性。

船体极限强度分析的改进解析方法

在船体极限强度研究的理论方法中,直接方法和简化方法是面向设计的方法。对于破损船体结构非对称的情况,弯矩与曲率方向在非弹性阶段不再存在固定的关系,简化方法需由插值计算得到破损船体极限强度。直接方法中的线弹性方法十分简单,但计算精度可能不好,因为在压缩边缘屈曲后船体性能不再是线性,剖面中和轴的位置将发生变化;使用经验公式对于常规船型可以得到合理的解,但人们在用经验公式计算新的或通用船型时必须小心,因为它们由有限的数据导出;而解析方法通过假设船体剖面在极限状态下的应力分布,考虑压缩边缘屈曲和拉伸边缘屈服由理论计算得到船体极限强度,可以更精确地包括不同剖面和材料的影响。Paik和Mansour (1995) 基于极限状态时中和轴附近材料保持弹性状态和弹性区域偏向受拉一侧的假设,推导了完整船体极限强度的解析公式,比较研结果表明,虽然解析方法没有显式地包含结构构件的卸载效应,但只要假设的剖面应力分布合理,还是可以得到准确的结果。

大量的模型试验和有限元分析结果验证了Paik极限强度模型中关于在船体梁达到极限状态时中和轴附近材料保持弹性状态的假设,但同时也质疑Paik极限强度模型中关于弹性区域偏向受拉一侧的假设。基于船体极限强度模型试验和实船有限元分析,结合板和加筋板格极限强度分析的弹塑性法,提出面向设计的船体极限强度分析的改进解析方法。该改进解析方法的基本步骤是:

1、将船体剖面离散化为加筋板格,利用EPM法计算其屈曲极限强度;

2、极限状态时船体剖面拉伸边缘屈服,压缩边缘屈曲,而在剖面中和轴附近保持线弹性状态;

3、剖面弹性区域由完全屈服和屈曲应力分布模型中拉伸力心和压缩力心在垂直于中和轴方向的位置确定;

4、极限状态剖面中和轴的位置和方向由平衡条件确定;

5、船体极限弯矩可表示为弹塑性应力分布模型中拉伸力与拉伸力心和压缩力心之间的距离的乘积。

船体结构极限强度综述

综述船舶极限强度研究现状,包括平板及加筋板及船体梁极限强度的计算分析方法,以及平板和加筋板、船体梁和实船极限强度试验研究。

板和加筋板极限强度分析

研究船体结构的极限强度,首先要从板和加筋板的极限强度计算分析开始,船体板及加筋板的极限强度研究方法主要包括经验公式和解析法、有限元法和试验法。

在ISSC2000技术委员会建议对联合载荷作用下加筋板的极限强度进行研究后,一些学者对具有凹痕、开孔板的极限强度和铝制加筋板极限强度等进行研究。张少雄等基于有限元计算结果,给出单轴压力作用下的简支板中的凹痕形状、尺寸及位置对板极限强度的影响,并用曲线拟合方法得到了预报凹痕板极限强度经验公式。Paik基于有限元分析结果提出在边界剪切载荷作用下开孔板的极限强度预报经验公式,并给出双向轴压、边界剪切载荷作用下开孔板极限强度的关系。Masaoka等提出一个计及初始缺陷影响的在压缩载荷作用下加筋板简化设计方程。Rizzo等基于大量有限元计算结果,提出一种预报纯剪切载荷作用下加筋板极限强度预报的简化方法,并给出不同几何尺度和初始缺陷下的放大系数。

随着计算技术和非线性有限元的发展,许多大型通用有限元程序,如Marc,Ansys,Abaqus等,已经应用到加筋板极限强度预报中。有大量关于平板以及加筋板极限强度的有限元法研究。但是随着快速船舶的发展,铝制加筋板对于轻型运输系统具有较好的应用前景。而铝制结构与钢制结构不同,熔焊所产生的热影响区对结果极限强度有较大影响。因此,研究铝制加筋板的极限强度也就显得非常重要。

一些学者对于凹痕、腐蚀以及疲劳裂纹对极限强度影响也开展了大量的仿真研究。Nakai等对不同点蚀分布的板的强度进行研究,并讨论在面内压缩和弯曲载荷作用下点蚀对极限强度的影响。Ok等通过非线性有限元软件,完成在局部点蚀的影响下平板极限强度的计算。Huang等对计及点蚀影响的板在轴压下的极限强度进行数值计算,研究点蚀体积与极限强度之间的关系。

船体结构极限强度模型试验

船体结构极限强度模型试验是研究船体纵向极限强度的主要方法之一,模型试验可以代表船体总纵极限强度,采用缩尺模型,可以减少试验难度,降低试验成本;通过试验,可以比较直观的研究结构在外载荷作用下从局部到整体逐步渐进的崩溃过程。由于实船试验耗费巨大,并且很难进行实船极限强度试验,因此,实船试验进行得很少,更多的是进行加筋箱型梁模型试验,虽然试验对象不再是船舶的缩尺模型,但为船体结构极限强度理论预报方法的验证提供了许多有参考价值的数据和结论。

Paik等通过试验方法研究具有初始裂纹的平板在轴线压缩或拉伸载荷作用下的极限强度以及具有初始裂纹的箱型结构在轴向压缩载荷作用下的极限强度。Gordo等采用名义屈服应力为690MPa的高强度钢制作3个不同细长比的箱型梁模型,通过四点弯曲的加载方式,完成箱型梁极限强度试验。Saad-Eldeen等通过将3个箱型梁模型放入海水中,研究非线性腐蚀对箱型梁极限强度的影响。随后Saad-Eldeen等根据试验的结果进行了结构响应、初始缺陷的幅值以及形状、板的细长比和结构失效之间的关系的研究。Gordo等通过四点弯曲加载方式完成4个不同板厚与跨距的箱型梁极限强度试验。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}